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Motivation and Contribution

Challenge: Classical IBVS methods suffer from numerical instabilities and singularities, while marker-based approaches (ArUco, AprilTags) limit deployment in dynamic

indoor environments. GPS-denied scenarios demand efficient, marker-free visual servoing for quadrotor control.

Our Solution: We present a self-supervised neuro-analytical framework featuring a Numerically Stable Efficient and Reduced (NSER) IBVS teacher model, distilled into a

lightweight 1.7M parameter student network achieving 11× real-time performance with improved control accuracy.

Key Contributions:

Stable analytical teacher: Improved IBVS controller solving numerical instabilities through reduced classical equations, enabling robust marker-free control.

Two-stage segmentation: YOLOv11 + U-Net mask splitter for anterior-posterior vehicle segmentation, accurately estimating target orientation.

Efficient knowledge distillation: Dual-path system transferring geometric visual servoing from teacher to compact student neural network that outperforms the

teacher while suitable for onboard deployment.

Practical sim-to-real transfer: Digital-twin training with real-world fine-tuning, validated in GPS-denied indoor environments with minimal hardware.

Limitations in existing methods: The core challenge

Indoor quadrotor navigation faces critical challenges:

Classical IBVS Methods

Numerical instabilities from singularities in interaction matrix

Conditioning issues during large camera motions

Suboptimal convergence in dynamic scenarios

Require careful feature correspondence

Marker-Based Approaches

Dependency on ArUco/AprilTag fiducial markers

Sensitive to lighting conditions & occlusion

Marker installation/maintenance overhead

Limited deployment in unstructured environments

Open Challenge: How to achieve marker-free, numerically stable, real-time visual servoing in GPS-denied indoor environments with minimal computational

resources for onboard deployment?

Requirements:

X Stability: Robust control without numerical instabilities

X Marker-free: No dependency on fiducial markers or external infrastructure

X Real-time: Suitable for onboard deployment on resource-constrained platforms

X GPS-denied: Vision-only navigation in indoor non-GPS environments

X Cost-effective: Minimal training data and hardware requirements

Our Solution: Framework Overview

Teacher-Student Knowledge Distillation Architecture

Figure 1. Overview of the proposed Teacher-Student Self-supervised Neuro-Analytic model. Top row illustrates the NSER-IBVS (analytical) Teacher path, which uses YOLO for object segmentation and a

mask splitter network to estimate object orientation relative to the drone camera. The bottom one represents the Student path, which learns by minimizing the MSE cost between its output drone

commands (νx, νy, ωz) and the Teacher’s output.

Teacher Path: NSER-IBVS

Analytical & Numerically Stable

1. YOLOv11 Nano (2.84M params)
Object detection & segmentation

2. U-Net Mask Splitter (1.94M params)

Anterior-posterior segmentation to compute orientation

3. Stable Keypoint Extraction
Clockwise ordering from mask centroids

4. Reduced IBVS Controller
Computes νx, νy, ωz only

Role: Generate training labels

(velocity commands for student)

Student Path: Lightweight CNN

Compact & Real-Time

1. Input: RGB image (224 × 224)
Given an single RGB image to compute velocities

2. Convolutional Network Backbone
6 conv blocks (16→512 channels)

3. Global Average Pooling
Spatial dimension reduction

4. Fully-Connected Layers
Direct velocity regression (νx, νy, ωz)

Role: End-to-end deployment

Only 1.7M params, 11× faster

Technical Contribution: Student learns implicitly from teacher without explicit supervision

Training: Minimize MSE between student predictions and teacher commands

Result: Student achieves similar (real-world environment) or better (digital-twin environment) control with 11× speedup

Numerically Stable Efficient Reduced Image-Based Visual Servoing (NSER-IBVS)

Two-Stage Segmentation for Stable Feature Detection

Figure 2. Comparison of different bounding box approaches derived from segmentation results:

(left) regular bounding box including parts that do not belong to the object, (middle) oriented

bounding box that may vary in orientation between frames, and (right) oriented bounding box

using a mask-splitting network to separate anterior and posterior vehicle components for

improved ordering stability.

1. YOLOv11 Nano (2.84M params)
Detects vehicle & generates segmentation mask

2. U-Net Mask Splitter (1.94M params)

Splits mask into front/back regions

Uses attention mechanisms for precise division

3. Oriented Bounding Box
Clockwise keypoint ordering from centroids

4 stable corner points for IBVS

Reduced IBVS: 6-DOF→ 3-DOF

Classical IBVS controls 6 velocities (vx, vy, vz, ωx, ωy, ωz), causing numerical
instabilities. For fixed-altitude quadrotors, we reduce to 3 essential commands:
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Reducing IBVS from 6-DOF to 3-DOF matches the drone’s physical constraints

(the two angular velocities can’t be controlled by our quadrotor and the vertical

linear velocity is not needed in this setup) for faster, more stable visual servoing.

Benefits of this approach:

Resolves singularities in interaction matrix

Ensure stable feature correspondence across consecutive frames

Enables marker-free visual servoing using four keypoints via the two-stage segmentation pipeline, following v = −λL+
s (s − s∗)

Knowledge Distillation & Data Generation

Real-Time Student Network (1.7M params)

Direct RGB → velocity regression with MSE loss

Conv layers: 16→512 channels (batch norm + GELU)

Target normalization for stable training

Two-stage: Pretrain on sim, fine-tune on real data

Digital Twin & Dataset

Sphinx/Unreal Engine 4 simulation (5×4m setup)

Sim: 14,693 train / 1,123 val frames

Real: 13,760 train / 1,084 val frames

Multiple gimbal angles (30°-90°) for diversity

Custom mask splitter tool for front/back labeling

Website & Demos Lab Website

Experimental Setup

Dataset & Training Protocol

Simulation Evaluation:

800 total test runs
(100 runs × 8 drone poses)

Student trained on only 240

runs

(30 per pose, 74,307 frames)

Data augmentation: 5× factor

(brightness, saturation, noise)

Input: 224 × 224 RGB images

Output: normalized (νx, νy, ωz)
Optimizer: Adam (lr=0.001)

Loss: MSE with early stopping

Real-World Validation:

80 flight sequences
(10 per pose, 43,963 frames)

Digital-twin pre-training

Real-world fine-tuning

Same termination conditions
Figure 3. Left represents 8 starting poses: front positions with the drone oriented at ±14°, and corner positions with the drone is oriented at ±45°, the task is to

navigate to the goal pose behind the car. Right represents an NSER-IBVS experiment in the digital-twin environment.

Termination Conditions & Evaluation Metrics

Teacher (NSER-IBVS):

1. Hard timeout: 75 seconds

2. Soft: median error ≤ 80 px + zero velocity (3s)

3. Hard: median error ≤ 40 px (3s)

Student (ConvNet):

Absolute velocity ≤ 1 for 3 consecutive seconds

Empirically derived from teacher statistics

Evaluation Metrics:

Error Norm: L2 distance between current and goal keypoints (last 3s)

IoU: Intersection over Union of bounding boxes

Flight Duration: Total time from takeoff to landing

Flight Distance: Total path length traveled

Inference Speed: FPS comparison

Results

The results demonstrate that the student model achieves significantly improved tracking accuracy compared to the teacher method. In simulation, the student model

achieves a mean error norm of 14.261 pixels compared to the teacher 29.756 pixels, representing a 52% improvement in tracking precision. The IoU metric shows similar

improvements, with the student achieving 0.752 compared to the teacher 0.522, indicating better object coverage and localization in Table 1.

Flight SIM

(distance(m) / time(s)) ↓
Norm

Error SIM (px) ↓ IoU SIM ↑ Flight

(distance(m) / time(s)) ↓
Norm

Error (px) ↓ IoU ↑

Up-Right
Teacher 5.675 / 24.226 31.800 0.503 5.622 / 41.581 31.499 0.621
Student 6.064 / 28.298 13.172 0.766 5.716 / 45.885 22.802 0.6919

Front-Left
Teacher 6.196 / 27.315 30.706 0.517 6.493 / 37.535 28.54 0.611
Student 6.041 / 27.917 13.430 0.758 6.490 / 47.238 33.981 0.560

Right
Teacher 4.317 / 19.637 31.137 0.494 4.831 / 41.409 32.423 0.612
Student 4.518 / 21.987 13.798 0.759 4.811 / 57.245 43.672 0.5

Down-Left
Teacher 2.779 / 15.988 28.473 0.518 4.384 / 31.622 28.00 0.611
Student 2.777 / 14.900 13.257 0.763 4.326 / 41.044 39.531 0.5253

Mean
Teacher 4.774 / 22.111 29.756 0.522 5.253 / 36.185 29.956 0.627
Student 4.859 / 23.790 14.261 0.752 5.300 / 45.369 33.334 0.591

Table 1. Performance comparison; left side - results in the simulator | right side - results on real-world flights

Figure 4. Trajectories of teacher and student simulation flights, with mean and standard deviation for 2 starting poses (green circles:

front-left and front-right). The solid blue and green lines represent mean paths of teacher NSER IBVS method, while dashed orange

and red lines show student paths. Shaded regions indicate trajectory variability across runs. The star represents the goal pose.

Note that the student displays more path variation, but it has a shorter average path than the teacher. On the right are the

visualizations of the real-world drone perspective and actor perspective.

The trajectory evolution analysis reveals that both

methods successfully converge toward the target, but

with different characteristics. The teacher method

shows more conservative command profiles with

gradual convergence, while the student method

demonstrates more direct approaches with faster error

reduction rates shown in Figure 4.

Evaluator Avg Std Med Min Max FPS

NSER IBVS 20.69 7.63 24.56 6.45 82.55 48.30

Student 1.85 0.93 1.84 1.79 235.64 540.8

Table 2. Computation times (ms). The small 1.7M params student

ConvNet is 11× faster (540.8 FPS) than the teacher (48.3 FPS)

Student - key observations:

Significantly better computation with 11× speedup

Robust tracking precision (err norm: 14.2 | 33.3)
Better object coverage (mIoU: 0.75 | 0.59)
Fine-tuning on real-world scenes proves effective for domain adaptation

Figure 5. Comparison of drone control command and error evolution on novel test sequences for (a) teacher (NSER IBVS) and (b) student (Self-Supervised Neuro-Analytical) across flight trajectories from 8

different starting points (see Figure 3). Solid lines represent mean values; shaded areas indicate variability across runs. All control commands and errors converge toward zero, indicating robust trajectory

tracking and control convergence from various initial conditions. Note the striking similarity in drone control and distance error to target between the complex analytical teacher and the small ConvNet

student.

Conclusions

First fully self-supervised, marker-free visual servoing framework for quadrotors.

Efficient knowledge distillation: a lightweight student model (1.7M parameters) achieves 11× faster inference (529.8FPS) than the analytical teacher (48.3FPS) while
maintaining comparable accuracy.

Practical sim-to-real transfer requiring only 80 real-world flights for adaptation.

Real-time performance suitable for onboard deployment.
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