Efficient Self-Supervised Neuro-Analytic Visual Servoing for Real-time Quadrotor Control

Sebastian Mocanu'® Sebastian-lon Nae®* Mihai-Eugen Barbu!* Marius Leordeanu * =3 ELIAS

INational University of Science and Technology POLITEHNICA Bucharest, Romania 2|nstitute of Mathematics "Simion Stoilow” of the Romanian Academy, Romania SNORCE Norwegian Research Center, Norway

Motivation and Contribution Numerically Stable Efficient Reduced Image-Based Visual Servoing (NSER-IBVS) Results
Challenge: Classical IBVS methods suffer from numerical instabilities and singularities, while marker-based approaches (ArUco, AprilTags) limit deployment in dynamic The results demonstrate that the student model achieves significantly improved tracking accuracy compared to the teacher method. In simulation, the student model
indoor environments. GPS-denied scenarios demand efficient, marker-free visual servoing for quadrotor control. Two-Stage Segmentation for Stable Feature Detection achieves a mean error norm of 14.261 pixels compared to the teacher 29.756 pixels, representing a 52% improvement in tracking precision. The loU metric shows similar

: . . . . . L . improvements, with the student achieving 0.752 compared to the teacher 0.522, indicating better object coverage and localization in Table 1.
Our Solution: We present a self-supervised neuro-analytical framework featuring a Numerically Stable Efficient and Reduced (NSER) IBVS teacher model, distilled into a

lightweight 1.7M parameter student network achieving 11 x real-time performance with improved control accuracy. 1. YOLOv11 Nano (2.84M params) Flight SIM Norm Flight Norm
Detects vehicle & generates segmentation mask . . loU SIM 1 .. . loU 1
o (distance(m) / time(s)) | Error SIM (px) | (distance(m) / time(s)) | Error (px) J
Key Contributions: 2. U-Net Mask Splitter (1.94M params)
: . L - . . . Splits mask into front/back regions Uo-Rioht Teacher 5.675/ 24.226 31.800 0.503 5.622 /41.581 31.499 0.621
- _?_tabletanalytlcal te?chher: I\r/ncg)[%veldllB\(JS [c\:lor;trollelj soll.\&ngfnumetnce.al mstat:hbes thhrlejgh reducidhg:lassmal eqtue?hon;, enhe.abllrlg mt?[USt. metar;er—free control. Uses attention mechanisms for precise division P-RIENT ot dent 6064 / 28.298 13.172 0.766 5716 / 45 885 29802 0.6919
" IWO-Stage segmentation. V + U-INET MaskK SpPIITter Tor anterior-posterior venlicie segmentation, accurately estimatng target orientaton. . .
n Efﬁcientgknovsled e distillation: Dual-path system trgnsferrin eometrﬁ)c visual servoin frim teacher to com a?:/t student r%euragl network that outperforms the > Onente-d Boundl-ng Box - Front-Left Teacher 6.196/27.315 30./706 0.51/ 6493/ 37.933 28.54  0.611
OWIed's ' Pattl 5y 55 5 P P Clockwise keypoint ordering from centroids ONULE Student 6.041/27.917 13.430 0.758 6.490 / 47.238 33.981 0.560
teacher while suitable for onboard deployment. 4 stable corner points for IBVS
* Practical sim-to-real transfer: Digital-twin training with real-world fine-tuning, validated in GPS-denied indoor environments with minimal hardware. Right Teacher ~ 4.317/19.637 31.137 0.494 4.831 / 41.409 32423 0.612
Reduced IBVS: 6-DOF — 3-DOF Student 4518/ 21.987 13.798 0.759 4811/ 57/.245 43.672 0.5
Classical IBVS controls 6 velocities (vg, vy, vz, wy, wy, w>), causing numerical Sownl e TEAChEr 2779 /15988 28473 0518  4384/31.622 2800 0.611
Limitations in existing methods: The core challenge instabilities. For fixed-altitude quadrotors, we reduce to 3 essential commands: Student  2.777 / 14.900 13.257 0.763 4.326 / 41.044 39531 (0.5253
Indoor auadrotor navieation faces critical challenses: . f - Uy Mean Teacher 4.774 / 22.111 29.756 0.522 5.253/ 36.185 29.956 0.627
: 8 BES: Wy _(—z Vv, (1) Student  4.859 /23.790 14.261 0.752 5.300/45369 33334 0591
Classical IBVS Methods Marker-Based Approaches Figure 2. Comparison of different bounding box approaches derived from segmentation results: v 0 _% Y Y
. . . L . . . . (left) regular bounding box including parts that do not belong to the object, (middle) oriented © Table 1. Performance comparison; left side - results in the simulator | right side - results on real-world flights
= Numerical instabilities from singularities in interaction matrix = Dependency on ArUco/AprilTag fiducial markers bounding box that may vary in orientation between frames, and (right) oriented bounding box Reducing IBVS from 6-DOF to 3-DOF matches the drone’s physical constraints
_ e : : _ " SN " : using a mask-splitting network to separate anterior and posterior vehicle components for - > . N The trajectory evolution analysis reveals that both
Cond|h9n|ng issues durmg large ca.mera moﬁons SenS|hv§ to I|ghhng Co.ndmons & occlusion mproved ordering stability. (the two angular velocities can’t be controlled by our quadrotor and the vertical S | — methods successfully converge toward the target, but
* Suboptimal convergence in dynamic scenarios * Marker installation/maintenance overhead linear velocity is not needed in this setup) for faster, more stable visual servoing. e EEEEEEEEEEEE:%:;%32;:,5{;3:{;::%“ with different characteristics. The teacher method
= Require careful feature correspondence = Limited deployment in unstructured environments shows more conservative command profiles with
. | | . o - | . . | Benefits of this approach: oradual convergence, while the student method
Open Challenge: How to achieve marker-free, numerically stable, real-time visual servoing in GPS-denied indoor environments with minimal computational - el di el e i frfrermreom ot demonstrates more direct approaches with faster error
resources for onboard deployment? 5 | O reduction rates shown in Figure 4.
= Ensure stable feature correspondence across consecutive frames 2l
Requirements: = Enables marker-free visual servoing using four keypoints via the two-stage segmentation pipeline, following v = —AL{ (s — s¥) Evaluator ~ Avg Std Med Min  Max FPS
v Stability: Robust control without numerical instabilities NSER IBVS 20.69 /.63 24.56 645 82.55 48.30
v Marker-free: No dependency on fiducial markers or external infrastructure Knowledge Distillation & Data Generation Student 1.85 0.93 1.84 1./79 235.64 540.8
v Real-time: Suitable for onboard deployment on resource-constrained platforms Real-Time Student Network (1.7M params) Digital Twin & Dataset | | | | | =0 1y Table 2. Computation times (ms). The small 1.7M params student
v. GPS-denied: \/ISIOH—Only nawgahon in indoor non-GPS environments » Direct RGB — velocity regression with MSE loss . Sphinx/Unreal Engine 4 simulation (5><4m Setup) Rl 5 & - B9 ConvNet is 11x faster (540.8 FPS) than the teacher (48.3 FPS)
v Cost-effective: Minimal training data and hardware requirements = Conv layers: 16—512 channels (batch norm + GELU) = Sim: 14.693 train / 1.123 val frames Figure 4. Trajectories of teacher and student simulation flights, with mean and standard deviation for 2 starting poses (green circles: :
| ’ | front-left and front-right). The solid blue and i { ths of teacher NSER 1BVS method, while dashed Student - key observations:
] iation for stable trainin e Real: 13.760 train / 1.084 val frames ront-left and front-right). The solid blue and green lines represent mean paths of teacher method, while dashed orange o e
] ] larget normaliza S . ’ ’ and red lines show student paths. Shaded regions indicate trajectory variability across runs. The star represents the goal pose. Significantly better computation with 11X speedup
Our Solution: Framework Overview = Two-stage: Pretrain on sim, fine-tune on real data = Multiple gimbal ang|eg (30°-90°) for diversity Note that the student displays more path variation, but it has a shorter average path than the teacher. On the right are the " Robust tracking precision (err norm: 14.2 | 33.3)
C : : visualizations of the real-world drone perspective and actor perspective. " Better object coverage (mloU: 0.75 | 0.59)
= Custom mask splitter tool for front/back labeling . . | | |
ine-tuning on real-world scenes proves effective for domain adaptation
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= Optimizer: Adam (Ir=0.001) _ TS T W Figure 5. Comparison of drone control command and error evolution on novel test sequences for (a) teacher (NSER IBVS) and (b) student (Self-Supervised Neuro-Analytical) across flight trajectories from 8
Figure 1. Overview of the proposed Teacher-Student Self-supervised Neuro-Analytic model. Top row illustrates the NSER-IBVS (analytical) Teacher path, which uses YOLO for object segmentation and a " Loss: MSE with early stopping e L AT q & " _ Vi - SN different starting points (see Figure 3). Solid lines represent mean values; shaded areas indicate variability across runs. All control commands and errors converge toward zero, indicating robust trajectory
mask splitter network to estimate object orientation relative to the drone camera. The bottom one represents the Student path, which learns by minimizing the MSE cost between its output drone A IR e _d o tracking and control convergence from various initial conditions. Note the striking similarity in drone control and distance error to target between the complex analytical teacher and the small ConvNet
commands (v, v, w.) and the Teacher's output. Real-World Validation: | TRy : student.
= 80 flight sequences
Teacher Path: NSER-IBVS Student Path: Lightweight CNN 0 per pose, 49,763 iframes) Conclusions
" Digital-twin pre-training
Analytical & Numerically Stable Compact & Real-Time - [NERReIe el Figure 3. Left represents 8 starting poses: front positions with the drone oriented at +14°, and corner positions with the drone is oriented at +45°, the task is to = First fully self-supervised, marker-free visual servoing framework for quadrotors.
" Same termination conditions navigate to the goal pose behind the car. Right represents an NSER-IBVS experiment in the digital-twin environment : FURIIPNE : : : : : :
1. YOLOv11 Nano (2.84M params) 1. Input: RGB image (224 x 224) ' ' = Efficient knowledge distillation: a lightweight student model (1.7M parameters) achieves 11 x faster inference (529.8F' P.S) than the analytical teacher (48.3F PS) while
Object detection & segmentation Given an single RGB image to compute velocities TErrrRE e CarElitere S BvEliEiian Vet maint.aininog comparable aCCU"aC\/-. | | |
2. U-Net Mask Splitter (1.94M params) 2. Convolutional Network Backbone e NEE LR ey M = Practical sim-to-real transfer requiring only 80 real-world flights for adaptation.
or- i ' i i eacher - . valuation vietrics: . .
Anterior post.enor segm.entahon to compute orientation 6 conv blocks (1695.12 channels) ( ) = Real-time performance suitable for onboard deployment.
3. Stable Keypoint Extraction 3. Global Average Pooling 1. Hard timeout: 75 seconds = Error Norm: L2 distance between current and goal keypoints (last 3s)
Clockwise ordering from mask centroids Spatial dimension reduction 5 Soft- i < %0 N ocity (39) U- Int G Uni b dine b
4 Reduced IBVS Controller 4. Fully-Connected Layers . O0TL: Mme IE.3|’1 Crror < PX T Zero VEIOCITY (oS _O . 1N erseci on over . NiIoN Of boundading OXGS. ACknOWledgementS
Computes v, v, w, only Direct velocity regression (v, v, w.) 3. Hard: median error < 40 px (3s) = Flight Duration: Total time from takeoff to landing
= Flight Distance: Total path length traveled This work is supported by projects:
Role: Generate training labels Role: End-to-end deployment Student (ConvNet): « Inference Speed: FPS comparison
(velocity commands for student) Only 1.7M params, 11X faster = Absolute velocity < 1 for 3 consecutive seconds ' = Romanian Hub for Artificial Intelligence - HRIA, Smart Growth, Digitization and Financial Instruments Program, 2021-2027 (MySMIS No. 334906)
» Empirically derived from teacher statistics = European Health and Digital Executive Agency (HADEA) through DIGITWIN4CIUE (Grant No. 101084054)

Technical Contribution: Student learns implicitly from teacher without explicit supervision " European Lighthouse of Al for Sustainability - ELIAS, Horizon Europe program (Grant No. 101120237

Training: Minimize MSE between student predictions and teacher commands
Result: Student achieves similar (real-world environment) or better (digital-twin environment) control with 11 x speedup
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